Abstract Submitted for the MAR12 Meeting of The American Physical Society

Boson mode, Intermediate Phase, and glass molecular structure of heavy metal Oxides¹ S. CHAKRABORTY, P. BOOLCHAND, U. of Cincinnati — We have synthesized bulk glasses of $(B_2O_3)_5(TeO2)_{95-x}(V_2O_5)_x$ ternary and examined their thermal and optical properties as a function of composition "x." The enthalpy of relaxation at T_g shows a global minimum in the Vanadia concentration of 24% < x < 26.5%, which we identify² as the intermediate phase (IP) with compositions at x < 24% to be in stressed-rigid and those at x > 26.5% in the flexible phase. Raman scattering reveals a rich lineshape including a Boson mode, whose scattering strength steadily decreases with increasing x, possibly due to bifurcation of weak (Te-O_{axial}) and strong (Te-O_{equatorial}) springs characteristic of TeO₂ building blocks.³ Vanadia alloying brings in isostatic building blocks, pyramidal V(O_{1/2})₃ and quasi-tetrahedral O= V(O_{1/2})₃as suggested by present Raman scattering and recent ⁵¹V NMR data.⁴ We describe the structure evolution of these glasses in terms of the Te-centered and V-centered local structures.

¹Supported by NSF grant DMR-08-53957.
²P. Boolchand et al. Phil. Mag. **85**, 3823 (2005)
³S. Sakida, J. Phys.: Condens. Matter **12** (2000)
⁴Ibid.

S. Chakraborty U. of Cincinnati

Date submitted: 09 Nov 2011

Electronic form version 1.4