Manipulation of 13C nuclear spins in diamond via dynamical decoupling control of the electron spin1 HOI-CHUN PO, REN-BAO LIU, Department of Physics, The Chinese University of Hong Kong – Utilizing the anisotropic nature of the hyperfine coupling between a negatively charged nitrogen-vacancy (NV) center spin and a moderately separated 13C nuclear spin, we present a scheme to efficiently control the 13C spin in 3 to 4 pulse cycles. This scheme uses only microwave pulses tuned to swap the NV center spin between the $m_s = 0$ and $m_s = 1$ states. With a strong magnetic field of the order of 10^3 G along the NV center symmetry axis, the nuclear spin can be flipped in approximately 10 μs. We also numerically study the effect of various sources of errors in realistic scenario and demonstrate that the fidelity of the scheme is satisfactory. The pulse sequences can be readily generalized to perform any single qubit operation on the nuclear spin.

1This work was supported by Hong Kong RGC/GRF CUHK402209, NSFC/RGC Joint Project N_CUHK403/11, and NSFC Project 11028510.

Hoi-Chun Po
Department of Physics, The Chinese University of Hong Kong

Date submitted: 07 Nov 2011
Electronic form version 1.4