Abstract Submitted for the MAR12 Meeting of The American Physical Society

Popularity similarity versus in growing networks DMITRI KRIOUKOV, University of California San Diego, FRAGKISKOS PAPADOPOULOS, Cyprus University of Technology, MAKSIM KITSAK, University of California San Diego, MAR-IANGELES SERRANO, MARIAN BOGUNA, University of Barcelona - Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.

> Dmitri Krioukov University of California San Diego

Date submitted: 07 Nov 2011

Electronic form version 1.4