Theory-driven design of hole-conducting transparent oxides1 G. TRIMARCHI, H. PENG, IM J., A.J. FREEMAN, V. CLOET, A. RAW, K.R. POEPPELMEIER, Northwestern University, Evanston, IL 60208, K. BISWAS, S. LANY, NREL, Golden, CO 80401, A. ZUNGER, University of Colorado, Boulder, CO 80309 — The design of \textit{p}-type transparent conducting oxides (TCOs) aims at simultaneously achieving transparency and high hole concentration and hole conductivity in one compound. Such design principles (DPs) define a multi-objective optimization problem that is to be solved by searching a large set of compounds for optimum ones. Here, we screen a large set of ternary compounds, including Ag and Cu oxides and chalcogenides, by calculating via first-principles methods the design properties of each compound, in order to search for optimum \textit{p}-type TCOs. We first select Ag\textsubscript{3}VO\textsubscript{4} as a case study of the application of \textit{ab-initio} methods to assess a compound as a candidate \textit{p}-type TCO. We predict Ag\textsubscript{3}VO\textsubscript{4} (i) to have a hole concentration of $\approx 10^{14}$ cm$^{-3}$ at room temperature, (ii) to be at the verge of transparency, and (iii) to have lower hole effective mass than the prototype \textit{p}-type TCO CuAlO\textsubscript{2}. We then map the hole effective mass \textit{vs}. the band gap in the selected compounds and determine those that best meet the DPs by having simultaneously minimum effective mass and a band gap large enough for transparency.

1Funded by the DOE Energy Frontier Research Center for Inverse Design.

Giancarlo Trimarchi
Dept. of Physics, Northwestern University, Evanston, IL 60208

Date submitted: 10 Nov 2011
Electronic form version 1.4