Abstract Submitted for the MAR12 Meeting of The American Physical Society

Superconductivity and Magnetic Ordering in $RE_2Pt_3Ge_5$ (RE = La and Pr) Single Crystals NAKHEON SUNG, C.J. ROH, B.K. CHO¹, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea — Superconductivity and magnetic properties of rare-earth ternary germanide intermetallic compounds, $RE_2Pt_3Ge_5$ (RE = La and Pr), are investigated. La₂Pt₃Ge₅ and Pr₂Pt₃Ge₅ single crystals were synthesized by high temperature metal flux method with Ge self flux. These two compounds were formed in $U_2Co_3Si_5$ -type orthorhombic structure (space group *Ibam*) and the lattice parameters were determined using XRD of pulverized single crystals. La₂Pt₃Ge₅ exhibits an onset of superconducting phase transition at $T_c = 8.1$ K, which, to the best of our knowledge, is the highest T_c in U₂Co₃Si₅-type superconductors. Pr₂Pt₃Ge₅ shows both superconducting phase transition at $T_c = 7.9$ K and antiferromagnetic transition at $T_N = 4.4$ K. In addition, Pr₂Pt₃Ge₅ reveals strong magnetic anisotropy with an easy magnetic axis perpendicular to the *c*-axis, due to crystalline electric field effect. Including these results, we will discuss the nature of $RE_2Pt_3Ge_5$ single crystals in detail.

¹Author to whom correspondence should be addressed. Electronic mail: chobk@gist.ac.kr

Nakheon Sung GIST

Date submitted: 11 Nov 2011

Electronic form version 1.4