MAR12-2011-001274

Abstract for an Invited Paper for the MAR12 Meeting of the American Physical Society

Hole doping in frustrated spinels, $ZnCr_2O_4$ and $MgCr_2O_4$, and their two dimensional analogue SCGO, $SrCr_8Ga_4O_{19}^{-1}$ SIAN DUTTON. Princeton University

Recent experiments on the complex geometrically frustrated magnet, β -CaCr₂O₄, clearly illustrate the divergent effect of hole and static doping on the magnetic properties [1]. Given the complex parent state of β -CaCr₂O₄ this is not an ideal system for studying perturbations to the magnetic interactions. However, the onset of ferromagnetic fluctuations and ferrimagnetic ordering in β -Ca_{1-y}Cr₂O₄ suggests that other hole doped Cr^{3+/4+} systems may be of interest. The extreme sensitivity in the balance of competing magnetic interactions in geometrically frustrated magnets is illustrated clearly in Cr³⁺ spinels, ACr₂O₄. Antiferromagnetic (AFM) ordering in ACr₂O₄ occurs at a spin-Peierls transition. Both the low temperature magnetic and structural regimes are found to be highly sensitive to the A cation. In the case of ZnCr₂O₄ we find that very fine control of the reaction conditions is necessary to make stoichiometric ZnCr₂O₄, rather than hole doped Zn_{1+x}Cr_{2-x}O₄ (x \leq 0.04). From analysis of magnetic measurements, specific heat and neutron diffraction we have probed the nature of the transitions at T_N [2]. How hole doping effects the low temperature properties and the role of the d^2 Cr⁴⁺ cations on the isotropic d^3 Cr³⁺ magnetic lattice will be discussed. Our results on the more robust MgCr₂O₄ spinel will also be presented. A 2D analogue of the 3D pyrochlore magnetic lattice in the ACr₂O₄ spinels is found in SCGO, SrCr₈Ga₄O₁₉. In hole doped SCGO, SrCr₈M_xGa_{4-x}O₁₉ (M = Zn, Mg, Cu), a larger fraction of the Cr³⁺ can be oxidized. Hole doping is found to have a significant effect on the magnetic fluctuations, how this depends on the nature of the dopant cation will be addressed [3].

[1] S. E. Dutton, C. L. Broholm, and R. J. Cava, Journal of Solid State Chemistry 183, 1798 (2010).

[2] S. E. Dutton *et al.*, Physical Review B **83**, 064407 (2011).

[3] S. E. Dutton et al., Journal of Physics-Condensed Matter 23, 386001 (2011).

¹Contributing Authors: E. D. Hanson, Q. Huang, O. Tchernyshyov, C. L. Broholm, and R. J. Cava. Research supported by the DoE, Office of Basic Energy Science, Division of Materials Sciences and Engineering under Awrd DE-FG02-08ER46544.