Abstract Submitted for the MAR12 Meeting of The American Physical Society

Site Specific Molecular Chemisorption of O_2 on TiO₂(110): A Scanning Tunneling Microscopy Study ZHITAO WANG, YINGGE DU, ZDENEK DOHNÁLEK, IGOR LYUBINET-SKY, Pacific Northwest National Laboratory — The investigation of O₂ adsorption on TiO₂ is critical since it can help us to better understand the photooxidation mechanism of TiO₂. In our work, molecularly chemisorbed O_2 were directly imaged on reduced $TiO_2(110)$ at 50 K with scanning tunneling microscopy (STM). Two O₂ adsorption channels, one at bridging oxygen vacancies (V_O) and another at five-fold coordinated Ti atoms (Ti_{5c}), have been identified. While O_2 at Ti_{5c} appears as a single protrusion, the O_2 at V_O manifests itself by a disappearance of the V_O feature. It is found that STM tip can easily dissociate O_2 and the dissociation details strongly depend on the tunneling conditions and the type of the O_2 adsorption site. The chemisorbed O_2 at these two distinctive sites are the most likely precursors for the two previously established O₂ dissociation channels, observed at temperatures above 150 and 230 K at the V_O and Ti_{5c} sites, respectively

> Zhitao Wang Pacific Northwest National Laboratory

Date submitted: 02 Dec 2011 Electronic form version 1.4