Site Specific Molecular Chemisorption of O_2 on TiO$_2$(110): A Scanning Tunneling Microscopy Study

ZHITAO WANG, YINGGE DU, ZDENĚK DOHNÁLEK, IGOR LYUBINETSKY, Pacific Northwest National Laboratory —

The investigation of O_2 adsorption on TiO$_2$ is critical since it can help us to better understand the photooxidation mechanism of TiO$_2$. In our work, molecularly chemisorbed O_2 were directly imaged on reduced TiO$_2$(110) at 50 K with scanning tunneling microscopy (STM). Two O_2 adsorption channels, one at bridging oxygen vacancies (V_O) and another at five-fold coordinated Ti atoms (Ti$_5$c), have been identified. While O_2 at Ti$_5$c appears as a single protrusion, the O_2 at V_O manifests itself by a disappearance of the V_O feature. It is found that STM tip can easily dissociate O_2 and the dissociation details strongly depend on the tunneling conditions and the type of the O_2 adsorption site. The chemisorbed O_2 at these two distinctive sites are the most likely precursors for the two previously established O_2 dissociation channels, observed at temperatures above 150 and 230 K at the V_O and Ti$_5$c sites, respectively.

Zhitaow Wang
Pacific Northwest National Laboratory

Date submitted: 02 Dec 2011
Electronic form version 1.4