Abstract Submitted for the MAR12 Meeting of The American Physical Society

Interface control of emergent ferroic order in Ruddlesden-Popper $\mathbf{Sr}_{n+1}\mathbf{Ti}_n\mathbf{O}_{3n+1}$ TURAN BIROL, NICOLE A. BENEDEK, CRAIG J. FENNIE, School of Applied & Engineering Physics, Cornell University — We have discovered from first-principles an unusual polar state in the low n $\mathbf{Sr}_{n+1}\mathbf{Ti}_n\mathbf{O}_{3n+1}$ Ruddlesden-Popper (RP) layered perovskites in which ferroelectricity is nearly degenerate with antiferroelectricity, a relatively rare form of ferroic order. We show that epitaxial strain plays a key role in tuning the "perpendicular coherence length" of the ferroelectric mode, and does not induce ferroelectricity in these low dimensional RP materials as is well known to occur in \mathbf{SrTiO}_3 . These systems present an opportunity to manipulate the coherence length of a ferroic distortion in a controlled way, without disorder or a free surface. [T. Birol, N. A. Benedek, C. J. Fennie, Physical Review Letters, in press]

Date submitted: 13 Nov 2011

Electronic form version 1.4