Fermi surface topology and low-lying electronic structure of a new iron-based superconductor \(\text{Ca}_{10}\left(\text{Pt}_3\text{As}_8\right)\left(\text{Fe}_2\text{As}_2\right)_5 \)

CHANG LIU, MADHAB NEUPANE, SU-YANG XU, Joseph Henry Laboratory and Dept. of Physics, Princeton University, Y.J. WANG, Department of Physics, Northeastern University, NI NI, J.M. ALLRED, Department of Chemistry, Princeton University, L.A. WRAY, Joseph Henry Laboratory and Dept. of Physics, Princeton University; Advanced Light Source, Lawrence Berkeley National Laboratory, HSIN LIN, R.S. MARKIEWICZ, ARUN BANSIL, Department of Physics, Northeastern University, ROBERT J. CAVA, Department of Chemistry, Princeton University, M. ZAHID HASAN, Joseph Henry Laboratory and Dept. of Physics, Princeton University — We report a first study of low energy electronic structure and Fermi surface topology for the recently discovered iron-based superconductor \(\text{Ca}_{10}\left(\text{Pt}_3\text{As}_8\right)\left(\text{Fe}_2\text{As}_2\right)_5 \) (the 10-3-8 phase, with \(T_c \sim 8 \) K), via angle resolved photoemission spectroscopy (ARPES). Despite its triclinic crystal structure, ARPES results reveal a fourfold symmetric band structure with the absence of Dirac-cone-like Fermi dots (related to magnetism) found around the Brillouin zone corners in other iron-based superconductors. Considering that the triclinic lattice and structural supercell arise from the \(\text{Pt}_3\text{As}_8 \) intermediary layers, these results indicate that those layers couple only weakly to the FeAs layers in this new superconductor at least near the surface, which has implications for the determination of its potentially novel pairing mechanism.

Chang Liu
Joseph Henry Laboratory and Dept. of Physics, Princeton University

Date submitted: 14 Dec 2011
Electronic form version 1.4