Abstract Submitted for the MAR12 Meeting of The American Physical Society

Physical properties of single crystalline $SrSn_4$ and **BaSn**₅ superconductors¹ XIAO LIN, SERGEY BUD'KO, Department of Physics and Astronomy, Iowa State University and Ames Laboratory, GERMAN SAMOLYUK, Materials Science & Technology Division, Oak Ridge National Laboratory, MILTON TORIKACHVILI, Department of Physics, San Diego State University, PAUL CANFIELD, Department of Physics and Astronomy, Iowa State University and Ames Laboratory — We present the growths and detailed thermodynamic and transport measurements on single crystals of the recently discovered binary intermetallic superconductors, $SrSn_4$ and $BaSn_5$. Their superconducting transition temperatures T_c are found to be 4.8 K and 4.4 K respectively. Both materials are strongly-coupled, possibly multi-band superconductors. Hydrostatic pressure causes a decrease in the superconducting transition temperature at the rate of \approx -0.068 K/kbar for $SrSn_4$, and \approx -0.053 K/kbar for BaSn₅. Band structure and upper superconducting critical field anisotropy of SrSn₄ suggest complex, multi-sheet Fermi surface formed by four bands. De Hass-van Alphen oscillations are observed in BaSn₅, which indicates a more complex topology of Fermi surface.

 1 Work was supported by AFOSR-MURI grant FA9550-09-1-0603; the DMSE, Office of Basic Energy Sciences, US DOE contract # DE-AC02-07CH 11358; and NSF grant DMR-0805335.

Xiao Lin Department of Physics and Astronomy, Iowa State University and Ames Laboratory

Date submitted: 02 Dec 2011

Electronic form version 1.4