Abstract Submitted
for the MAR12 Meeting of
The American Physical Society

Physical properties of single crystalline SrSn$_4$ and BaSn$_5$ superconductors

XIAO LIN, SERGEY BUD’KO, Department of Physics and Astronomy, Iowa State University and Ames Laboratory, GERMAN SAMOLYUK, Materials Science & Technology Division, Oak Ridge National Laboratory, MILTON TORIKACHVILI, Department of Physics, San Diego State University, PAUL CANFIELD, Department of Physics and Astronomy, Iowa State University and Ames Laboratory — We present the growths and detailed thermodynamic and transport measurements on single crystals of the recently discovered binary intermetallic superconductors, SrSn$_4$ and BaSn$_5$. Their superconducting transition temperatures T_c are found to be 4.8 K and 4.4 K respectively. Both materials are strongly-coupled, possibly multi-band superconductors. Hydrostatic pressure causes a decrease in the superconducting transition temperature at the rate of ≈ -0.068 K/kbar for SrSn$_4$, and ≈ -0.053 K/kbar for BaSn$_5$. Band structure and upper superconducting critical field anisotropy of SrSn$_4$ suggest complex, multi-sheet Fermi surface formed by four bands. De Hass-van Alphen oscillations are observed in BaSn$_5$, which indicates a more complex topology of Fermi surface.

1Work was supported by AFOSR-MURI grant FA9550-09-1-0603; the DMSE, Office of Basic Energy Sciences, US DOE contract # DE-AC02-07CH11358; and NSF grant DMR-0805335.

Xiao Lin
Department of Physics and Astronomy,
Iowa State University and Ames Laboratory

Date submitted: 02 Dec 2011
Electronic form version 1.4