Persistent Photocontrolled Magnetism in Core-Shell Prussian Blue Analogues

ELISABETH S. KNOWLES, MATTHIEU F. DUMONT, MARCUS K. PEPRAH, MARK W. MEISEL, Dept. Phys. and NHMFL, Univ. Florida, CARISSA H. LI, DANIEL R. TALHAM, Dept. Chem., Univ. Florida — Cubic heterostructured (BA) particles of Prussian blue analogues, composed of shells of ferromagnetic K\textsubscript{j}Ni\textsubscript{k}[Cr(CN)\textsubscript{6}]\cdot nH\textsubscript{2}O (A), \(T_c \sim 70\) K, surrounding bulk cores (\(\sim 350\) nm) of photoactive ferrimagnetic Rb\textsubscript{a}Co\textsubscript{b}[Fe(CN)\textsubscript{6}]\cdot mH\textsubscript{2}O (B), \(T_c \sim 20\) K, have been studied. Below \(T_c \sim 70\) K, these samples exhibit a persistent photoinduced decrease in low-field magnetization, resembling results from previous core-shell particles\(^2\) and analogous ABA films.\(^3\) This net decrease suggests that the photoinduced lattice expansion in the B layer generates a strain-induced decrease in the magnetization of the A layer, similar to a pressure-induced decrease observed by others in a pure A material\(^4\) and by us in the BA cubes. To quantify the length scale over which the photoinduced strain dissipates into the A layer, a series of B and BA cubes of varying shell thickness have been characterized.

We acknowledge early contributions to this work by D.M. Pajerowski. Supported by NSF DMR-0701400 (MWM), DMR-1005581 (DRT), DMR-0654118 (NHMFL), and the State of Florida.

\(^1\)M.F. Dumont \textit{et al.}, Inorg. Chem. 50 (2011) 4295.