Abstract Submitted for the MAR12 Meeting of The American Physical Society

BCS-BEC crossover induced by a synthetic non-Abelian gauge field¹ VIJAY B. SHENOY, JAYANTHA P. VYASANAKERE, Indian Institute of Science, S. ZHANG, Ohio State University — We investigate the ground state of interacting spin-half fermions(3D) at a finite density $(\rho \sim k_F^3)$ in the presence of a uniform non-Abelian gauge field (with magnitude λ) that generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length $(k_F|a_s| \leq 1)$, the ground state in the absence of the gauge field $(\lambda = 0)$ is a BCS superfluid with large overlapping pairs. With increasing λ , a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC ground state of bosons even with a weak attractive interaction. For large gauge couplings ($\lambda/k_F \gg 1$), the BEC attained is a condensate of bosons whose properties are solely determined by the gauge field (and not by the scattering length); we call these bosons "rashbons." In the absence of interactions $(a_s = 0^-)$, the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling λ_T . For high symmetry gauge field configurations we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of λ near λ_T .

¹Supported by DST and DAE, India

Vijay Shenoy Indian Institute of Science

Date submitted: 13 Nov 2011 Electronic form version 1.4