Flat-twisted-helical transition in composed gel sheets and self assembled chiral molecules1 SHAHAF ARMON, ERAN SHARON, Hebrew University, Jerusalem, EFI EFRATI, University of Chicago, RAZ KUPFERMAN, Hebrew University, Jerusalem — We recently presented a new chirality creating mechanism in elastic strips. In such frustrated bodies, the chiral configuration is determined in a competition between bending and stretching energies, controlled by a dimensionless parameter $\tilde{w} = w \sqrt{k/t}$, in which w is the strip’s width, t – its thickness and k - the spontaneous curvature. I will show the geometrical and mechanical equivalence between such elastic strips and self assembled molecules made of twisted elements. I will also show experiments in responsive gels, showing how a continuous variation in \tilde{w} yields an ordered shape transition from flat to twisted and helical shapes and to tubes. Similar transitions have been observed in self assembled macromolecules.

1This work was supported by Eshkol scholarship of the Israeli ministry of Science and ERC “SoftGrowth” project.