Abstract Submitted for the MAR12 Meeting of The American Physical Society

¹H NMR study on X-ray irradiated κ -(BEDT-TTF)₂Cu[N(CN)₂]Br KAZUYA MIYAGAWA, University of Tokyo, TAKAHIKO SASAKI, Tohoku University, NAOKI YONEYAMA, Yamanashi University, NORIO KOBAYASHI, Tohoku University, KAZUSHI KANODA, University of Tokyo — The κ -(BEDT- $TTF)_2Cu[N(CN)_2]Br(\kappa-Br)$ is a quasi-two dimensional superconductor with T_c of 12 K. By substituting Cl for Br in the insulating layer, the system becomes a Mott insulator, k-(BEDT-TTF)₂Cu[N(CN)₂]Cl (κ -Cl), with the Neel temperature of 25 K. So, κ -Br salt is situated close to the Mott transition. Recently, Sasaki et al., have reported the transformation from a metallic (superconducting) state to an insulating state by the x-ray irradiation. The 500h-irradiated thin sample shows insulating behavior in the temperature dependence of resisitivity. We report the ¹H NMR studies on the 500h-irradiated κ -Br salt. Below 150 K, where the nuclear relaxation is dominated by electron spins, $1/T_1$ of the irradiated sample increases from that of the non-irradiated sample and is even larger than the value of κ -Cl. Nevertheless, there is no manifestation of magnetic ordering; that is, neither a line broadening nor a divergent peak in $1/T_1$ down to 1.5 K. We will discuss the electronic state of irradiated k-Br salt based on experimental results.

> Kazuya Miyagawa University of Tokyo

Date submitted: 13 Nov 2011 Electronic form version 1.4