Abstract Submitted for the MAR12 Meeting of The American Physical Society

Coexistence of Superconductivity and Magnetic Order in $\mathbf{RuGd_2Sr}(\mathbf{Cu_{1-x}Fe_x})_2\mathbf{O_8}$ probed by $^{99}\mathbf{Ru}$ and $^{57}\mathbf{Fe}$ Mössbauer Effects¹ D. COFFEY, Dept. of Physics, Buffalo State College, NY, G. LONG, Dept. of Physics, SUNY Buffalo, M. DEMARCO, Dept. of Physics, Buffalo State College, NY, M. S. TORIKACHVILI, Dept. of Physics, San Diego State University -RuGd₂Sr₂Cu₂O₈ develops magnetic order at about 137K and becomes a superconductor at lower temperatures ($T_{SC} \sim 40 K$). T_{SC} decreases with increasing Fe doping in RuGd₂Sr₂(Cu_{1-x}Fe_x)₂O₈ and is zero by x = .03. We measure the ⁹⁹Ru and ⁵⁷Fe Mössbauer Effects for x=0, 0.1, 0.2, and 0.3. The ⁵⁷Fe Mössbauer spectra(MS) show that there are two different Fe sites at 4.2K with very similar hyperfine magnetic fields, $H_{hyper} \sim 48$ T. However H_{hyper} goes to zero at \sim half the Fe sites in a temperature range between 30K and 40K in superconducting and non-superconducting samples. There is no significant change in H_{hyper} in the $^{99}\mathrm{Ru}$ MS in this temperature range. We conclude that the Fe sites whose H_{hyper} does not change are in the magnetically ordered RuO planes. We assume that the Fe's which see the transition between 30K and 40K are in the CuO planes and investigate how this transition arises.

¹The work was supported by USDOE(DE-FG02-03ER46064) at BSC and by NSF-DMR-085335 at SDSU.

Dermot Coffey Dept. of Physics, Buffalo State College, NY

Date submitted: 09 Nov 2011 Electronic form version 1.4