Abstract Submitted for the MAR12 Meeting of The American Physical Society

Athermal Jamming Vs Thermalized Glassiness in a Simple Model of Soft-Core Interacting Particles¹ STEPHEN TEITEL, University of Rochester, PETER OLSSON, Umeå University — Numerical simulations of soft-core frictionless disks in two dimensions are carried out to study shear viscosity η and pressure p of a simple model liquid, as a function of thermal temperature T, packing fraction ϕ , and uniform applied shear strain rate $\dot{\gamma}$. We find that viscosity in the athermal hard-core limit, $\lim_{\dot{\gamma}\to 0}[\lim_{T\to 0}\eta]$, is singularly disconnected from viscosity in the hard-core thermal limit, $\lim_{T\to 0}[\lim_{\dot{\gamma}\to 0}\eta]$, demonstrating that thermal glassy behavior is not governed by the athermal jamming critical point, "point J".

¹Work supported by Department of Energy Grant No. DE-FG02-06ER46298 and Swedish Research Council Grant No. 2010-3725. Simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC and HPC2N.

> Stephen Teitel University of Rochester

Date submitted: 09 Nov 2011

Electronic form version 1.4