Abstract Submitted for the MAR12 Meeting of The American Physical Society

Structural and magnetic characterization of the complete delafossite solid solution $(CuAlO_2)_{1-x}(CuCrO_2)_x$ PHILLIP BARTON, RAM SE-SHADRI, Materials Department and Materials Research Laboratory, University of California, Santa Barbara, ANDREA KNOLLER, Institut für Materialwissenschaft, Universität Stuttgart 70569, Germany, MATTHEW ROSSEINSKY, Department of Chemistry, University of Liverpool, England, UK — We have prepared the complete delafossite solid solution between diamagnetic CuAlO₂ and the t_{2a}^3 frustrated antiferromagnet CuCrO₂. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the Végard law and $\mu_{\rm eff}$ is equal to the Cr³⁺ spin-only S = 3/2 value. $\Theta_{\rm CW}$ is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, $J_{\rm BB}$ was estimated by mean-field theory to be 3.0 meV. Despite the sizable $\Theta_{\rm CW}$, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. For all samples, the 5 K isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5 T. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in $CuCrO_2$ above its Néel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.

> Phillip Barton Materials Department and Materials Research Laboratory, University of California, Santa Barbara

Date submitted: 26 Nov 2011

Electronic form version 1.4