Abstract Submitted for the MAR12 Meeting of The American Physical Society

Modeling charge and energy transports in π conjugated systems YONGWOO SHIN, XI LIN, Boston University — A generic 3D model Hamiltonian is developed to simulate the charge and energy transports in π -conjugated composite materials. The intrachain interactions are described by our recently developed adapted Su-Schrieffer-Heeger Hamiltonian and the interchain $\pi\pi$ interactions are modeled using distance-dependent hopping integrals. Excellent agreements in their binding energetics and geometries with post-Hartree-Fock ab initio methods and experiments are found in the cases of a benzene dimer, graphene bi-layer, and poly-(*p*-phenylene vinylene) (PPV) crystal. The computed photoinduced charge separated states and associated adsorption spectra of the PPV-C₆₀ and PPV-C₆₀-graphene agree perfectly with experimental measurements.

> Yongwoo Shin Boston University

Date submitted: 14 Nov 2011

Electronic form version 1.4