Abstract Submitted for the MAR12 Meeting of The American Physical Society

Spin-phonon coupling effect in $AMnO_3$ (A=Ca, Sr, Ba) and La MO_3 (M=Cr, Fe, Cr/Fe) from DFT+U and hybrid functional methods JIAWANG HONG, Rutgers University, ALESSAN-DRO STROPPA, CNR-SPIN, Italy, JORGE INIGUEZ, ICMAB-CSIC, Spain, SILVIA PICOZZI, CNR-SPIN, Italy, DAVID VANDERBILT, Rutgers University — Spin-phonon coupling effects, as reflected in phonon frequency shifts between ferromagnetic (FM) and G-type antiferromagnetic (AFM) configurations in cubic CaMnO₃, SrMnO₃, $BaMnO_3$, $LaCrO_3$, $LaFeO_3$ and $La_2(CrFe)O_6$, are investigated using density-functional methods. The calculations are carried out using the DFT+U method with a U that has been extracted by comparing with hybrid-functional (HSE) calculations. The phonon frequency shifts $\Delta \omega = \omega_{\rm AFM} - \omega_{\rm FM}$ obtained in this way agree well with those computed directly from the more accurate HSE approach, but are obtained with much less computational effort. We find that in the $AMnO_3$ materials class with (A=Ca,Sr,Ba), the Γ (R) phonon frequency shift $\Delta \omega$ decreases (increases) as the A^{2+} size increases. In LaMO₃ (M=Cr, Fe, Cr/Fe), the phonon frequencies at Γ decrease as spin order changes from AFM to FM for LaCrO₃ and LaFeO₃, but they increase for double perovskite $La_2(CrFe)O_6$. We discuss the prospects for bulk and superlattice forms of these materials to be useful as multiferroics.

> Jiawang Hong Rutgers University

Date submitted: 09 Nov 2011

Electronic form version 1.4