Voronoi Cell Patterns: Application of the size distribution to societal systems\(^1\) RAJESH SATHIYANARAYANAN\(^2\), DIEGO LUIS GONZÁLEZ\(^3\), ALBERTO PIMPINELLI\(^4\), T.L. EINSTEIN, U. of Maryland — In studying the growth of islands on a surface subjected to a particle flux, we found it useful to characterize the distribution of the areas of associated Voronoi (proximity or Wigner-Seitz) cells in terms of the generalized Wigner surmise\(^5\) and the gamma distributions. Here we show that the same concepts and distributions are useful in analyzing several problems arising in society.\(^6\) We analyze the 1D problem of the distribution of gaps between parked cars, assuming that successive cars park in the middle of vacant spaces, and compare with published data. We study the formation of second-level administrative divisions, e.g. French arrondissements. We study the actual distribution of arrondissements and the Voronoi tessellation associated with the chief town in each. While generally applicable, there are subtleties in some cases. Lastly, we consider the pattern formed by Paris Métro stations and show that near the central area, the associated Voronoi construction also has this sort of distribution.

\(^1\)Work at UMD supported primarily by NSF-MRSEC-DMR 05-20471, with partial support from DOE-BES-CMCSN and by CNAM at UMD.
\(^2\)Permanent address: IBM-Bangalore
\(^3\)As of 1/12: Univ. del Valle, Cali, Colombia
\(^4\)Presently Science Attaché, French Consulate, Houston
\(^6\)DLG et al., arXiv 1109.3994; RS, Ph.D. dissertation; RS et al., preprint

T.L. Einstein
U. of Maryland

Date submitted: 15 Nov 2011
Electronic form version 1.4