Abstract Submitted for the MAR12 Meeting of The American Physical Society

Momentum-Resolved d-wave Eliashberg Calculation Using The Spin Excitation Spectrum for LSCO Superconductors SEUNG HWAN HONG, HAN-YONG CHOI, SungKyunKwan University — We solve the momentum resolved d-wave Elishberg equation employing the magnetic excitation spectrum from the inelastic neutron scattering on the LSCO superconductors reported by Vignolle et al. [1]. The magnetic excitation spectrum exhibits 2 peaks: a sharp incommensurate peak at 18 meV at momentum $(\pi, \pi \pm \delta)$ and $(\pi \pm \delta, \pi)$, and another broad peak near 40~70 meV at momentum (π,π) . Above 70 meV, the magnetic excitation spectrum has a long tail that is shaped into a circle centered at (π,π) with δ' . The sign of the real part of the total self-energy $\Sigma(k,\omega) + X(k,\omega)$ is determined by the momentum position of the peaks of the magnetic excitation spectrum and bare dispersion $\xi(k)$. We will discuss the effects of the each component of the magnetic excitation spectrum on the self-energy $\Sigma(\vec{k},\omega)$ the renormalization of the band dispersion $X(\vec{k},\omega)$, the pairing function $\phi(\vec{k},\omega)$, and the spectral function $A(\vec{k}, \omega)$.

[1] B.Vignolle et.al., Nature Physics 3,163-167 (2007)

Seung Hwan Hong SungKyunKwan University

Date submitted: 05 Dec 2011

Electronic form version 1.4