Unusual ferromagnetism and strong spin-orbit coupling in Post-Perovskite CaIrO$_3$ LUKE MARSHALL, JINGUANG CHENG, JIANSHI ZOU, JOHN B. GOODENOUGH, Texas Materials Institute, The University of Texas at Austin, DANIEL HASKEL, Advanced Photon Source, Argonne National Laboratory, MICHEL VAN VEENENDAAL, Advanced Photon Source, Argonne National Laboratory and Department of Physics, Northern Illinois University — Strong spin-orbit coupling (SOC) and strong correlations have been considered essential in understanding the unusual physical properties of the 4d and 5d transition-metal oxides, such as the SOC driven Mott insulating state in Sr$_2$IrO$_4$. Recently, an unusual atomic-like orbital moment and strong SOC have been confirmed experimentally in R9BaIrO$_3$ through analysis of the branching ratio at the Ir $L_{2,3}$ absorption edges as obtained from x-ray absorption and x-ray magnetic circular dichroism (XMCD) measurements. We have applied the same techniques to probe unusual ferromagnetism and SOC in the post-perovskite (pPv) CaIrO$_3$, which is an insulator and exhibits weak ferromagnetism below $T_C \approx 110K$. The branching ratio at the Ir $L_{2,3}$ absorption edges, which is close to unity in pPv CaIrO$_3$, appears to indicate an even stronger spin-orbit interaction in the pPv CaIrO$_3$ than in R9BaIrO$_3$. However, it has been challenging to model the Ir 5d orbital moment, as probed by the XMCD measurements, due to the understood local octahedral-site distortions.

1This work was supported by the NSF (Grant No: DMR 1122603 (MIRT), DMR 0904282) Luke Marshall
The University of Texas at Austin

Date submitted: 22 Dec 2011 Electronic form version 1.4