Abstract Submitted for the MAR12 Meeting of The American Physical Society

Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in $YBa_2Cu_3O_x^1$ ALEXANDER MAISURADZE, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, ALEXANDER SHEN-GELAYA, Tbilisi State University, GE-0128 Tbilisi, Georgia, ALEX AMATO, EKATERINA POMJAKUSHINA, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, HUGO KELLER, Physuics Institute of University of Zurich, CH-8057 Zurich, Switzerland, UNIVERSITY OF ZURICH TEAM, PAUL SCHERRER IN-STITUTE TEAM, TBILISI STATE UNIVERSITY TEAM — The pressure dependence of the magnetic penetration depth λ in polycrystalline samples of YBa₂Cu₃O_x with different oxygen concentrations x = 6.45, 6.6, 6.8, and 6.98 was studied by muon spin rotation (μ SR). The pressure dependence of the superfluid density $\rho_s \propto 1/\lambda^2$ as a function of the superconducting transition temperature T_c is found to deviate from the usual Uemura line. The ratio $(\partial T_c/\partial P)/(\partial \rho_s/\partial P)$ is factor of $\simeq 2$ smaller than that of the Uemura relation. In underdoped samples, the zero temperature superconducting gap Δ_0 and the BCS ratio Δ_0/k_BT_c both increase with increasing external hydrostatic pressure, implying an increase of the coupling strength with pressure. The relation between the pressure effect and the oxygen isotope effect on λ is also discussed. In order to analyze reliably the μ SR spectra of samples with strong magnetic moments in a pressure cell, a special model was developed and applied.

¹This work was partially supported by MaNEP

Hugo Keller Physics Institute of University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Date submitted: 26 Nov 2011

Electronic form version 1.4