Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in YBa$_2$Cu$_3$O$_x$1 ALEXANDER MAISURADZE, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, ALEXANDER SHENGELAYA, Tbilisi State University, GE-0128 Tbilisi, Georgia, ALEX AMATO, EKATERINA POMJAKUSHINA, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, HUGO KELLER, Physics Institute of University of Zurich, CH-8057 Zurich, Switzerland, UNIVERSITY OF ZURICH TEAM, PAUL SCHERRER INSTITUTE TEAM, TBILISI STATE UNIVERSITY TEAM — The pressure dependence of the magnetic penetration depth λ in polycrystalline samples of YBa$_2$Cu$_3$O$_x$ with different oxygen concentrations $x = 6.45, 6.6, 6.8, \text{ and } 6.98$ was studied by muon spin rotation (μSR). The pressure dependence of the superfluid density $\rho_s \propto 1/\lambda^2$ as a function of the superconducting transition temperature T_c is found to deviate from the usual Uemura line. The ratio $(\partial T_c/\partial P)/(\partial \rho_s/\partial P)$ is factor of $\simeq 2$ smaller than that of the Uemura relation. In underdoped samples, the zero temperature superconducting gap Δ_0 and the BCS ratio $\Delta_0/k_B T_c$ both increase with increasing external hydrostatic pressure, implying an increase of the coupling strength with pressure. The relation between the pressure effect and the oxygen isotope effect on λ is also discussed. In order to analyze reliably the μSR spectra of samples with strong magnetic moments in a pressure cell, a special model was developed and applied.

1This work was partially supported by MaNEP

Hugo Keller
Physics Institute of University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Date submitted: 26 Nov 2011		Electronic form version 1.4