Pressure Effects on the Vanadium Oxides V_6O_{11}, V_7O_{13}, and V_8O_{15}

STELLA KIM, ESTELLE COLOMBIER, NI NI, SERGEY BUD’KO, PAUL CANFIELD, Iowa State University and Ames Laboratory — Members of the V_NO_{N-1} Magneli Series ($3 < N < 9$) exhibit metal to insulator transitions (MIT) as well as antiferromagnetic (AFM) transitions at ambient pressure, with the exception of V_7O_{13} which remains metallic to lowest measured temperatures. In this talk we present pressure and temperature dependent measurements of electrical resistivity for V_6O_{11}, V_7O_{13} and V_8O_{15} samples. For V_6O_{11} and V_8O_{15} MIT can be suppressed by 4 and 1.3 GPa respectively. For V_7O_{13} and V_8O_{15} T_{SDW} can be suppressed by 3.5 GPa. Composite phase diagrams will be presented and low temperature data, focusing on the possibility of quantum criticality will be discussed.

1Supported by U.S. DOE (DE-AC02-07CH11358)