Abstract Submitted
for the MAR12 Meeting of
The American Physical Society

Influence of growth parameters on the spin-filtering properties of epitaxial ferrite tunnel barriers
J.-B. MOUSSY, S. MATZEN, R. MATTANA, F. PETROFF, UMR CNRS/Thales, G.-X. MIAO, J.S. MOODERA, Francis Bitter Magnet Lab., CEA TEAM, UMR CNRS/THALES TEAM, MIT TEAM — In spintronics, spin-filtering is a physical phenomenon which has the potential to produce highly spin-polarized currents by the spin-selective transport of electrons across a ferromagnetic tunnel barrier. The insulating ferrites MnFe$_2$O$_4$, CoFe$_2$O$_4$ and NiFe$_2$O$_4$, whose Curie temperatures are above 300K, are promising candidates for spin-filtering at room temperature. In this work, we report on the in-depth study of structural, chemical and physical properties of epitaxial ferrite ultra-thin films and associated spin-filtering measurements as a function of different growth parameters. We analyze the effect of oxidation on the physical properties and the resultant spin-polarization. The influence of structural defects on the spin-filter efficiency is also put on view by tunneling magnetoresistance. Finally, we show the impact of the MgAl$_2$O$_4$(001) substrates on the magnetic behavior of cobalt ferrite tunnel barriers revealing the important role played by strains in the spin-filter properties.

1This work is supported by the Partner University Fund
2IRAMIS, SPCSI, 91191 Gif-sur-Yvette, France
3IRAMIS, SPCSI, 91191 Gif-sur-Yvette, France
4UMR CNRS/Thales, 91767 Palaiseau, France
5UMR CNRS/Thales, 91767 Palaiseau, France
6Phys. Dep., Massachusetts Institute of Technology, Cambridge, MA
7Phys. Dep., Massachusetts Institute of Technology, Cambridge, MA

Date submitted: 10 Nov 2011