Abstract Submitted for the MAR12 Meeting of The American Physical Society

Influence of growth parameters on the spin-filtering properties of epitaxial ferrite tunnel barriers¹ J.-B. MOUSSY², S. MATZEN³, CEA-Saclay, R. MATTANA⁴, F. PETROFF⁵, UMR CNRS/Thales, G.-X. MIAO⁶, J.S. MOODERA⁷, Francis Bitter Magnet Lab., CEA TEAM, UMR CNRS/THALES TEAM, MIT TEAM In spintronics, spin-filtering is a physical phenomenon which has the potential to produce highly spin-polarized currents by the spin-selective transport of electrons across a ferromagnetic tunnel barrier. The insulating ferrites MnFe₂O₄, CoFe₂O₄ and NiFe₂O₄, whose Curie temperatures are above 300K, are promising candidates for spin-filtering at room temperature. In this work, we report on the in-depth study of structural, chemical and physical properties of epitaxial ferrite ultra-thin films and associated spin-filtering measurements as a function of different growth parameters. We analyze the effect of oxidation on the physical properties and the resultant spin-polarization. The influence of structural defects on the spin-filter efficiency is also put on view by tunneling magnetoresistance. Finally, we show the impact of the $MgAl_2O_4(001)$ substrates on the magnetic behavior of cobalt ferrite tunnel barriers revealing the important role played by strains in the spin-filter properties.

¹This work is supported by the Partner University Fund ²IRAMIS, SPCSI, 91191 Gif-sur-Yvette, France ³IRAMIS, SPCSI, 91191 Gif-sur-Yvette, France ⁴UMR CNRS/Thales, 91767 Palaiseau, France ⁵UMR CNRS/Thales, 91767 Palaiseau, France ⁶Phys. Dep., Massachusetts Institute of Technology, Cambridge, MA ⁷Phys. Dep., Massachusetts Institute of Technology, Cambridge, MA

Date submitted: 10 Nov 2011

Electronic form version 1.4