Far-infrared optical properties of pyrochlore heavy fermion superconductor Cd$_2$Re$_2$O$_7$ in the normal and superconducting states

M. REEDYK, M. HAJIALAMDARI2, D.A. CRANDLES, F.S. RAZAVI, Dept. Physics, Brock University, R.K. KREMER, Max Planck Institute for Solid State Research — Cd$_2$Re$_2$O$_7$ is a pyrochlore oxide which exhibits superconductivity with a transition temperature T_C near 1 K. The far-infrared optical properties of Cd$_2$Re$_2$O$_7$ will be presented at temperatures above and below T_C. Superconductivity induced changes in the phonon structure are observed. Thermal reflectance spectra show two absorption features, near 9.6 and 19.3 cm$^{-1}$ which arise in the superconducting state. Optical conductivity spectra reveal a softening (\sim 1 cm$^{-1}$) of the phonon mode at 35 cm$^{-1}$ in the superconducting state. Analysis of the frequency dependent optical effective mass and scattering rate support the classification of this material as a modest heavy electron system at low temperatures.

1This work was supported by the Natural Sciences and Engineering Research Council of Canada.

2currently at the University of Waterloo

Maureen Reedyk
Dept. Physics, Brock University

Date submitted: 14 Dec 2011

Electronic form version 1.4