Noise correlations in quasi-1D conductors with different contact geometries

A. BELKADI, A.F. ISAKOVIC, Khalifa University - KUSTAR, Abu Dhabi, UAE — We nanofabricated end contacts to mesowires of NbSe$_3$ and tested for the presence of correlations in noise spectroscopy at various temperatures below Peierls transition temperature. We find that for $1/f$-like, broadband noise (BBN), the degree of correlations in transport in two segments along a NbSe$_3$ mesowire can be tuned with electric field and temperature. For standard, bottom/top contacts geometries, we see a limited degree of correlations for narrow band noise (NBN) (typically 20-30%, except for a limited range of temperatures), but we also see that end contact geometry enhances the degree of correlations for NBN signal (closer to 50%). We believe this phenomenon is related to a better control of the CDW transport, such as weaker temperature dependence of condensate current. We also explore the issues of the overall energy transfer through such contacts.

The material growth and some of the measurements were done in Prof. R. E. Thorne lab at Cornell University. We acknowledge recent support from ATIC-SRC through contract 2011-KJ-2190 and KUSTAR.

A. Belkadi
Khalifa University - KUSTAR, Abu Dhabi, UAE

Date submitted: 15 Dec 2011

Electronic form version 1.4