The Korringa-Kohn-Rostoker Method Applied to Warm Dense Matter

DANIEL FINKENSTADT, U.S. Naval Academy, Physics Dept., Annapolis, MD, CHARLES E. NEWNAM, U.S. Naval Academy, Aerospace Dept., Annapolis, MD, BRIAN G. WILSON, Lawrence Livermore National Laboratory, Livermore, CA — The electronic structure, EOS and transport properties of warm electrons in an amorphous or disordered configuration of ions is not well described by either solid-state or plasma models. Such warm, dense systems share the characteristic of the solid state that multi-center scattering effects are of paramount importance in forming bands of valence states. Theoretical treatment of the EOS of warm, dense matter therefore requires a way to include significant occupation of higher energy and angular momentum channel continuum states. We are extending the Green’s function Kohn-Korringa-Rostoker code MECCA as an all-electron (non-pseudo potential) method that treats arbitrary mixtures of atoms on an ab-initio basis over a broad range of conditions, from cold, solid matter up to hot plasmas at extreme (ICF) compression. Specific examples of Aluminum and Boron-Nitride will be discussed.

1Supported by the Military Academy Research Associates program, LLNL/USNA.