Abstract Submitted
for the MAR12 Meeting of
The American Physical Society

Sorting Category: 10.1.1 (E)

Modification of thickness dependent magnetic properties of perpendicular anisotropy Co/Pd multilayer upon hydrogenation

KINESHMA MUNBODH, FELIO PEREZ, DAVID LEDERMAN, West Virginia University — We have studied the change in saturation magnetization (M_S) and effective perpendicular anisotropy (K_{eff}) upon hydrogenation at room temperature and a pressure of one atmosphere in $(\text{Co/Pd})_{25}$ multilayers, with Co thickness ≤ 5 Å and Pd thickness ranging from 0 Å to 25 Å. The change in M_S and K_{eff} was studied as a function of the x-ray scattering length density profile, generated from the x-ray reflectivity fits. The results show that when the Pd thickness ≤ 10 Å, the films were highly interdiffused, resulting in no measurable change in M_S and K_{eff}. As the thickness of Pd increases, the contrast between the Co and Pd layers increases, leading to a decrease in M_S and an increase in the component of magnetization in the plane of the samples and hence causing K_{eff} to decrease. The results clearly demonstrate that the solubility of hydrogen in the multilayer samples decreases with increasing alloying effects as it decreases the vacancy in the Pd 4d band leading to no electronic transfer from the hydrogen atoms to the Pd.

This work was supported by the Department of Energy.

Kineshma Munbodh
kmunbodh@mix.wvu.edu
West Virginia University

Prefer Oral Session