Abstract Submitted
for the MAR12 Meeting of
The American Physical Society

Spin-Orbital Locking, Emergent Pseudo-Spin, and Magnetic order in Na$_2$IrO$_3$

SUBHRO BHATTACHARJEE1, University of Toronto, SUNG-SIK LEE2, McMaster University, YONG BAEK KIM3, University of Toronto — The nature of magnetic order in the honeycomb lattice Iridate Na$_2$IrO$_3$ is explored by considering trigonal crystal field effect and spin-orbit coupling. An effective Hamiltonian is derived in terms of an emergent pseudo-spin-1/2, resulting from a spin-orbital locking, which is different from $j_{\text{eff}} = 1/2$ that is obtained when the spin-orbit coupling dominates. The resulting Hamiltonian is anisotropic and frustrated. Mean field theory suggests a ground state with 4-sublattice zig-zag magnetic order in the relevant parameter regime, in conformity with experiments. Various properties of the phase, the spin-wave spectrum and experimental consequences are discussed. Our approach contrasts with the recent proposal of a Heisenberg-Kitaev system for this material, and we point out the intrinsic difficulties with the latter approach for describing the magnetic properties of Na$_2$IrO$_3$.

1Also at: McMaster University
2Also at: Perimeter Institute for Theoretical Physics
3Also at: Korea Institute of Advanced Study

Subhro Bhattacharjee
University of Toronto

Date submitted: 10 Nov 2011
Electronic form version 1.4