Electrostatic Force Microscopy of Fe$_3$O$_4$ nanoparticles

A. MOTTAGHIZADEH, LPEM, ESPCI-ParisTech-UPMC-CNRS, Paris, France; P.L. LANG, LPEM, ESPCI-ParisTech-UPMC-CNRS, Paris, France; School of Science, BUPT, Beijing, China; L. CUI, LPEM, ESPCI-ParisTech-UPMC-CNRS, Paris, France; IOP and Beijing Nat. Lab. for Cond. Phys., CAS, Beijing, China; J. LESUEUR, A. ZIMMERS, H. AUBIN, LPEM, ESPCI-ParisTech-UPMC-CNRS, Paris, France; J. LI, D.N. ZHENG, IOP and Beijing Nat. Lab. for Cond. Phys., CAS, Beijing, China; V. REBUTTINI, Dept. of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal; N. PINNA, Dept. of Chem., CICECO, Univ. of Aveiro, Portugal; WCU, C2E2, School of Chem. and Biological Engineering, College of Engineering, SNU, Seoul, Korea — The electronic compressibility is a fundamental property that characterizes the electronic properties of materials submitted to an external electric field. In metals (insulators), the electronic compressibility is large (small) and leads to a small (large) screening length. Variations of the screening length can be observed through measurements of the “quantum” capacitance between one material and a metallic counter-electrode. Using an Electrostatic Force Microscope (EFM), we measured maps of the local capacitance of 8 nm magnetite nanoparticles synthesized following the “benzyl alcohol route” deposited on a metallic substrate. Magnetite, an inverse spinel structure of composition Fe$_3$O$_4$, is a material with strongly correlated electronic properties and presents a metal-insulator transition at 120 K, the so-called Verwey transition. We present EFM measurements of these nanoparticles as a function of tip-sample distance and temperature.

Alireza Mottaghizadeh
LPEM, ESPCI-ParisTech-UPMC-CNRS, Paris, France

Date submitted: 06 Dec 2011

Electronic form version 1.4