Abstract Submitted for the MAR12 Meeting of The American Physical Society

Strong Electronic Correlations in YMn₂Ge₂ DANIEL MCNALLY, JACK SIMONSON, GREG SMITH, MEIGAN ARON-SON, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA — Exotic phases, like superconductivity, often emerge near electron delocalization transitions in strongly interacting systems. Magnetization, heat capacity and resistivity measurements were performed on single crystals of the antiferromagnetic metal YMn₂Ge₂, which is isostructural to the ThCr₂Si₂-type iron pnictides. Above the antiferromagnetic ordering temperature $T_N=425$ K, the magnetic susceptibility displays Curie-Weiss like behaviour with a fluctuating moment $\mu = 3.3 \ \mu_B/Mn$ atom, larger than the ordered moment of $2.2 \ \mu_B/Mn$ atom. Heat capacity measurements yield a Sommerfeld coefficient $\gamma = \frac{C}{T} = 8.5 \text{ mJ/mol Mn K}^2$, nearly three times larger than γ_{Ru} $= 3.3 \text{ mJ/mol} \text{ Mn K}^2$ for its non-magnetic isostructual analog YRu₂Ge₂, indicating strong electronic correlations in YMn₂Ge₂. The quasiparticle mass enhancement $\frac{m^*}{m_{Ru}} = \frac{\gamma}{\gamma_{Ru}} = 2.6$ is similar to the value observed in the 122-type iron pinctides. Fermi-liquid behaviour of the resistivity $\rho = \rho_0 + AT^2$ is observed over a very broad range of temperatures between 0.5 K and 300 K, with the resistivity at low temperature $\rho(0.5 \text{ K})$ $= 8 \ \mu\Omega$ cm indicating high sample quality

> Daniel McNally Dept of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

Date submitted: 27 Nov 2011

Electronic form version 1.4