Abstract Submitted for the MAR12 Meeting of The American Physical Society

Scanning tunneling spectroscopic studies of the ironarsenic superconducting $Ba(Fe_{1-x}Co_x)_2As_2$ single crystals M.L. TEAGUE, H. CHU, R. T.-P. WU, N.-C. YEH, Dept. of Physics, Caltech, Pasadena, CA 91125, USA, P. CHEN, B. SHEN, H.-H. WEN, Institute of Physics, Chinese Academy of Sciences, China — Scanning tunneling spectra of Ba($Fe_{1-x}Co_x$)₂As₂ (x=0.06, 0.08, 0.12) single crystals are studied as a function of temperature (T) and magnetic field (H). For H = 0, direct evidence for two-gap superconductivity at energies $\omega = \Delta_{\beta}$ and $\Delta_{\alpha,\gamma/\delta} (\approx 2\Delta_{\beta})$ and for magnetic resonance modes at $\approx \Delta_{\beta} + \Delta_{\alpha,\gamma/\delta}$ are found for all samples at $T < T_c$. Fourier Ω transformation of the tunneling spectra reveals x- and ω -dependent quasiparticle interference (QPI) wave-vectors \mathbf{q}_2 near $(\pm \pi, 0)/(0, \pm \pi)$ and \mathbf{q}_1 near $(\pm 2\pi, 0)/(0, \pm 2\pi)$. The spectral intensity of \mathbf{q}_2 exhibits strong ω -dependence, peaking sharply at $\omega = \Delta_{\beta}, \Delta_{\alpha,\gamma/\delta}$ and Ω . This is in stark contrast to the Bragg diffraction peaks that are independent of ω , T and x. For H > 0, additional QPI wave-vector \mathbf{q}_3 appears near $(\pm \pi, \pm \pi)$. These findings are consistent with the sign-changing swave pairing symmetry. Additionally, for the optimally doped sample, a pseudogap at $\omega \sim$ $\Delta_{\gamma/\delta}$ is found inside the vortex core, possibly due to coexisting superconductivity and spin density waves. This result is in contrast to the zero-bias conductance peaks observed inside the vortex core of $(Ba_{1-x}K_x)Fe_2As_2$, implying asymmetry in the hole and electron-doping of the iron arsenides. This work was supported by NSF DMR-0907251. Marcus Teague

Dept. of Physics, Caltech, Pasadena, CA 91125, USA

Date submitted: 15 Nov 2011

Electronic form version 1.4