Interplay of Aerogel Anisotropy and Superfluid 3He Textures

JIA LI, J. POLLANEN, C.A. COLLETT, W.J. GANNON, W.P. HALPERIN, Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA — The effect of aerogel anisotropy on the 3He superfluid order parameter and the relative stability of A and B-phases has been investigated. We have performed pulsed NMR on 3He in high porosity aerogel samples that have different types of anisotropy, characterized with an optical, cross-polarization technique. One aerogel sample has 14.3% growth-induced axial stretching. Its superfluid phase diagram is occupied by the A-phase. Linewidth analysis gives the distribution of the orbital angular momentum, \(\vec{l}\). The orientation of \(\vec{l}\) is consistent with an easy plane distribution that is perpendicular to the strain axis. A second aerogel sample is axially compressed mechanically by 22.5%. The major part of the zero magnetic field phase diagram is occupied by the B-phase. Additionally, our results show that aerogel anisotropy introduced by compressing and stretching have different orienting effects on the 3He superfluid order parameters. This work was supported by the National Science Foundation, DMR-1103625.

Jia Li
jiali2015@u.northwestern.edu
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA