Opening and Closing of Nanocavities under Stress in Soft Nanocomposites: A Real Time Small Angle X-ray Scattering (SAXS) Observation

HUAN ZHANG, JORDAN DE CREVOISIER, Soft Matter Science and Engineering, ESPCI-PolyTech-CNRS-UPMC, Paris, France, ARTHUR SCHOLZ, Materials Research Laboratory, UCSB, 93106-5121 CA, U.S.A., FABIEN VION-LOISEL, Michelin, EDWARD J. KRAMER, Departments of Materials and Chemical Engineering, UCSB, 93106-5050, COSTANTINO CRETON, Soft Matter Science and Engineering, ESPCI-PolyTech-CNRS-UPMC, Paris, France — Cavitation occurring at the nanometer length scale has been recently demonstrated conclusively in rubbers1. Real time SAXS with synchrotron radiation is employed to probe the structure changes in carbon black filled styrene-butadiene rubber (SBR) under uniaxial tension. The scattering invariant $Q(\lambda)$, where λ is the extension ratio, increases sharply, which we attribute to void formation, above a critical true stress (~ 25 MPa) that is roughly independent of both filler content and crosslinking density. During step-cycle tests Q decreases on unloading to Q_0, its value before any testing, and does not increase again until λ exceeds the maximum previous $\lambda = \lambda_{\text{max}}$, showing that the voids close upon unloading and only reappear upon reloading when $\lambda > \lambda_{\text{max}}$ (Mullins effect). We attribute the increase of the scattering invariant once λ exceeds λ_{max} to the creation of new voids rather than to the reopening of old ones. The scattering of the voids in the region $q < 0.1$ nm$^{-1}$ can be separated from that of the carbon black particles and provides information on average void size and shape.

Costantino Creton
ESPCIPolyTech-UPMC-CNRS

Date submitted: 15 Nov 2011