Van der Waals interactions based on maximally localized Wannier functions in ABINIT

CAMILO ESPEJO, CINVESTAV-Unidad Querétaro, Universidad Jorge Tadeo Lozano, TONATIUH RANGEL, Université Catholique de Louvain, YANN POUILLON, Nano-Bio Spectroscopy Group - ETSF, ALDO ROMERO, CINVESTAV-Unidad Querétaro, XAVIER GONZE, Université Catholique de Louvain — We review the recent implementation1 of the method to evaluate van der Waals (vdW) interactions based on maximally localized Wannier functions2,3 in the DFT software ABINIT4. The implementation allows for the evaluation of vdW interaction energies for molecular and periodic systems on the same grounds and at a low additional computational cost as compared with a normal DFT calculation. Some results on test systems such as Ar\textsubscript{2}, benzene dimer and graphene bilayer show both its reliability and performance. Discussion of new defined variables controlling the calculation and guidelines for the user will be presented along with an application to MoS\textsubscript{2} structure.