Intrinsic defects in BiFeO₃: Energetics and implication for magnetism

TULA R. PAUDEL, SITARAM S. JASWAL, EVGENY Y. TSYMBAL, University of Nebraska, Lincoln — We investigate energetics of the intrinsic defects in bulk multiferroic BiFeO₃ and explore their implication for magnetization in this compound using a first-principles approach based on density functional theory. We find that dominant defects in oxidizing conditions are Bi and Fe vacancies and in reducing conditions are O and Bi vacancies. When enforcing charge neutrality, the calculated carrier concentration shows that the BiFeO₃ grown in oxidizing conditions has p-type conductivity. The conductivity decreases with oxygen partial pressure and the material becomes insulating with tendency for n-type conductivity. We find that the Bi and Fe vacancies produce a magnetic moment of \(\sim 1 \) \(\mu_B \) and \(\sim 5 \) \(\mu_B \) per vacancy, respectively, for p-type BiFeO₃ and none for insulating BiFeO₃. O vacancies do not introduce any moment for both p-type and insulating BiFeO₃. Calculated magnetic moments due to intrinsic defects are consistent with those reported experimentally for the bulk BiFeO₃, however do not explain the large magnetization observed in some experiments on thin-film BiFeO₃.