Abstract Submitted for the MAR12 Meeting of The American Physical Society

Magnetization and Specific Heat Investigations of the Bose Glass: Br-doped NiCl₂-4SC(NH₂)₂ FRANZISKA WEICKERT, CORNELIU MICLEA, ROMAN MOVSHOVICH, VIVIEN ZAPF, Los Alamos National Laboratory, RONG YU, Rice University Houston, TOMMASO ROSCILDE, ENSL, Lyon, France — $NiCl_2-4SC(NH_2)_2$ (DTN) is an insulating material, which shows field induced XY-AFM order between $H_{c1} = 2.1$ T and $H_{c2} = 12.6$ T. In boson language, the ground state of DTN can be described as a Mott insulator, and the ordered state as a Bose-Einstein condensation of magnons. Bond disorder is introduced by substituting Br atoms on Cl positions, which simultaneously changes the super exchange interaction along the *c*-direction on a local scale and leads to a Mott-glass ground state in zero field. Furthermore, the system develops a gapless Bose glass for magnetic fields 0 <H< H_{c1} and H> H_{c2} , followed by a Mott insulating state above the saturation field H_{sat} . Note, that the critical fields $H_{c1,2}$ and H_{sat} are shifted compared to those of pure DTN. In this talk, we report on measurements of the magnetization and specific heat at very low temperatures between 50 mK and 3 K in high magnetic fields up to 14 T on an 8% Br-doped single crystal DTN. We compare our data with the local gap model, which reduces the low-temperature and low-field behavior to those of an ensemble of individual three level systems with local magnetization $M_S = 0, \pm 1$ and a finite energy gap for H = 0.

> Franziska Weickert Los Alamos National Laboratory

Date submitted: 16 Nov 2011

Electronic form version 1.4