Abstract Submitted for the MAR12 Meeting of The American Physical Society

Sorting Category: 09.1.1 (E)

Magnetic, Thermal and Transport Properties of $LaNi_2(Ge_{1-x}P_x)_2^{1}$ R.J. GOETSCH, V.K. ANAND, ABHISHEK PANDEY, D.C. JOHNSTON, Ames Lab. and Dept. Phys. Astron., Iowa State Univ., Ames, IA 50011 — Polycrystalline samples of $LaNi_2(Ge_{1-x}P_x)_2$ (x = 0, 0.25, 0.50, 0.75, 1) with the tetragonal $ThCr_2Si_2$ structure were investigated by heat capacity C_p , magnetic susceptibility χ , and electrical resistivity ρ measurements for temperatures 1.8 K $\leq T \leq 300$ K. The $\rho(T)$ data for each sample reveal metallic behavior that follows the Bloch-Grüniesen theory. The low- $T C_{p}(T)$ data for the series yielded Sommerfeld coefficients $\gamma = 6-12 \text{ mJ/mol} \text{ K}^2$ and Debye temperatues $\Theta_{\rm D} = 300{-}480$ K. The $\chi(T)$ data showed nearly T-independent paramagnetism except for LaNi₂Ge₂, where data up to 1000 K exhibit a broad peak at ≈ 300 K. A possible onset of superconductivity is seen for LaNi₂P₂ at 2.1 K. Analytic functions accurately representing the Bloch-Grüniesen and Debye functions are presented that are very useful for fitting $\rho(T)$ and lattice $C_p(T)$ data, respectively.

¹Research supported by the USDOE under Contract No. DE-AC02-07CH11358.

X

R. J. Goetsch Prefer Oral Session rgoetsch@ameslab.gov Prefer Poster Session Ames Lab. and Dept. Phys. Astron., Iowa State Univ., Ames, IA 50011

Date submitted: 15 Dec 2011

Electronic form version 1.4