Nanoindenter Stiffness Measurements on a MEMS Sound Sensor

1. R. DOWNEY, L. BREWER, G. KARUNASIRI, Naval Postgraduate School — We demonstrate a novel technique to extract the various components of the stiffness (or compliance) measured along the surface of a MEMS directional sound sensor. Because the sensor comprises a cantilever beam mounted on torsion springs, the overall stiffness consists of various compliance components added in series. Stiffness measurements made using a nanoindenter are found to agree with an analytical model and a finite element model (FEM) of the sensor. Moreover, by exploiting the differing power-law characteristics of the individual compliance components, we demonstrate extraction of the separate components from a logarithmic plot of the overall stiffness. Finally, we measure the ultimate (failure) strength of the sensor, from which we obtain the maximum acoustic intensity the sensor can tolerate.

1Supported by NSF