Abstract Submitted for the MAR12 Meeting of The American Physical Society

Superconductivity in the T_2 phase of the Ta-Ge-B system LUCAS EDUARDO CORRÊA, CARLOS NUNES, GILBERTO COELHO, ANTONIO AU-GUSTO SILVA, ZACK FISK, ANTONIO JEFFERSON MACHADO, None, UNI-VERSITY OF CALIFORNIA AT IRVINE COLLABORATION — In the Ta-Ge system the α Ta₅Ge₃ phase is not superconductor. Considering the high solubility of this phase for boron, in this work it has been evaluated the effect of boron doping in α Ta₅Ge₃ on the electrical, heat capacity and magnetic properties of the produced materials. It has been shown that boron doping promoted superconductivity for some specific composition. The Ta₅GeB₂, also named T₂ phase, crystallizes in the tetragonal symmetry with Cr₅B₃ prototype structure. In this composition the sample presented the maximum superconducting critical temperature (3.4 K). Others systems that exhibit the existence of the T₂ phase present superconductivity such as Mo₅SiB₂ (T_c ~5.5 K), Nb₅Si_{3-x}B_x (T_{cmax} ~7.8 K) and W₅SiB₂ (T_c ~5.5 K). Thus, Ta₅GeB₂ is more one example.

> Lucas Eduardo Corrêa None

Date submitted: 16 Nov 2011

Electronic form version 1.4