Abstract Submitted for the MAR12 Meeting of The American Physical Society

Hint of a condensate in $K_{0.8}Fe_{2-v}Se_2^1$ C.C. HOMES, J.S. WEN, Z.J. XU, G.D. GU, Condensed Matter Physics and Materials Science Dept., Brookhaven National Laboratory, Upton, New York — The optical properties of the iron-chalcogenide superconductor $K_{0.8}Fe_{2-y}Se_2$ with a critical temperature $T_c = 31$ K have been measured over a wide frequency range in the a-b planes above and below T_c . The conductivity is incoherent at room temperature, but becomes coherent (Drudelike) with $\omega_{p,D} \simeq 430 \pm 20 \text{ cm}^{-1}$ and $1/\tau_D \simeq 70 \pm 5 \text{ cm}^{-1}$ at $T \simeq T_c$; however, $\omega_{p,D}$ is an order of magnitude smaller than what is observed in other iron-based superconductors. The highly anisotropic nature of these materials suggests that the transport is best described by a sheet resistance $R_{\Box} = \rho_{dc}/d \simeq 64 \text{ k}\Omega$ (per sheet), well above the threshold for the superconductor-insulator transition at $R_{\Box} = h/4e^2 \simeq 6.9 \text{ k}\Omega$. Below T_c , $\omega_{p,S} \simeq 220 \pm 20$ cm⁻¹ resulting in a superfluid density $\rho_{s0} \equiv \omega_{p,S}^2 \simeq 48 \times 10^3$ cm⁻², placing this material on the scaling line $\rho_{s0}/8 \simeq 4.4 \, \sigma_{dc} T_c$ observed for the cuprates, but in a region associated with Josephson coupling, suggesting this material is inhomogeneous and constitutes a Josephson phase.²

¹Supported by the DOE under Contract No. DE-AC02-98CH10886. ²C. C. Homes *et al.*, arXiv:1110.5529

> Christopher Homes Brookhaven National Laboratory

Date submitted: 15 Dec 2011

Electronic form version 1.4