Statistical Equilibria of Turbulence on Surfaces of Different Symmetry

WANMING QI, BRAD MARSTON, Brown University — We test the validity of statistical descriptions of freely decaying 2D turbulence by performing direct numerical simulations (DNS) of the Euler equation with hyperviscosity on a square torus and on a sphere. DNS shows, at long times, a dipolar coherent structure in the vorticity field on the torus but a quadrapole on the sphere. A truncated Miller-Robert-Sommeria theory can explain the difference. The theory conserves up to the second-order Casimir, while also respecting conservation laws that reflect the symmetry of the domain. We further show that it is equivalent to the phenomenological minimum-entrpy principle by generalizing the work by Naso et al. to the sphere. To explain finer structures of the coherent states seen in DNS, especially the phenomenon of confinement, we investigate the perturbative inclusion of the higher Casimir constraints.

1Supported in part by NSF DMR-0605619.