Abstract Submitted for the MAR12 Meeting of The American Physical Society

Suppression of An Antiferromagnetic Insulating Phase in $Sr_3(Ru_{1-x}Mn_x)_2O_7$ by Magnetic Field¹ BIAO HU, E.W. PLUM-MER, R. JIN, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 — Double-layered $Sr_3Ru_2O_7$ is a paramagnetic metal. The partial substitution of Mn for Ru results in metal-insulator transition at T_{MIT} and antiferromagnetic ordering at T_M in $Sr_3(Ru_{1-x}Mn_x)_2O_7$. Interestingly, both T_{MIT} and T_M can be easily suppressed by the application of magnetic field, especially for low-doping compounds (x < 0.1). This behavior can be explained as Mn-doping-induced antiferromagnetic-insulating domains below T_{MIT} . The application of magnetic field suppresses the antiferromagnetic coupling, thus converting the insulating domains back to metallic.

¹Support by NSF under grant Nos. DMR-1002622 and DMR-1122603.

Biao Hu Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803

Date submitted: 19 Dec 2011

Electronic form version 1.4