Quantum memory on topological spin glass
JEONGWAN HAAH,
Institute for Quantum Information and Matter, Caltech, SERGEY BRAVYI, IBM
Watson Research Center — We show that any topologically ordered local stabilizer
model of spins in three dimensional lattices that lacks string logical operators can be
used as a reliable quantum memory against thermal noise. It is shown that any local
process creating a topologically charged particle separated from other particles by a
distance R must cross an energy barrier of height $c \log R$. This property makes the
model glassy. We devise an efficient decoding algorithm that should be used at the
final read-out, and prove a lower bound on the memory time until which the fidelity
between the outcome of the decoder and the initial state is close to 1. The memory
time increases as $L^{c \beta}$ where L is the system size and β the inverse temperature,
as long as $L < L^* \sim e^{\beta}$. Hence, the optimal memory time scales as $e^{c \beta^2}$. Our
bound applies when the system interacts with thermal bath via a Markovian master
equation. We give an example of a strictly local stabilizer code that satisfies all of
our assumptions. We numerically verify for this example that our bound is tight up
to constants.