Abstract Submitted for the MAR12 Meeting of The American Physical Society

Interaction of CO_2 with Oxygen Adatoms on Rutile TiO₂(110) Surface¹ XIAO LIN, YEOHOON YOON, ZHENJUN LI, ZHI-TAO WANG, BRUCE D. KAY, IGOR LYUBINETSKY, ROGER ROUSSEAU, ZDENEK DOHNALEK, Pacific Northwest National Laboratory — On TiO₂(110), oxygen vacancies (V_O's) act as the primary catalytic sites and as such they have been extensively investigated. However, only a few studies have been reported about the interactions of adsorbates with oxygen adatoms (O_a) that are created by O_2 dissociation in V_O 's. Here, we report a combined scanning tunneling microscopy (STM) / density functional theory (DFT) study of CO₂ on bare and O_a covered TiO₂(110). STM images of TiO₂(110) surfaces obtained before and after in-situ dose at ~ 50 K show that CO₂ molecules preferentially adsorb next to O_a 's forming CO_2/O_a complexes. Temperature dependent studies further reveal that the CO_2 binding energy next to O_a 's is similar to that on V_O 's. Additional CO_2 molecules are found to diffuse rapidly along the Ti row between two CO_2/O_a complexes. Due to the slow STM sampling rate the images display a time average of all CO_2 binding configurations on the Ti rows and reveal differences in the populations found on ideal Ti sites and Ti sites next to V_O 's.

¹X.L. is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL. This work was supported by the US Department of Energy, Office of Basic Energy Sciences. The research was performed using EMSL.

> Xiao Lin Pacific Northwest National Laboratory

Date submitted: 16 Nov 2011

Electronic form version 1.4