Adsorption of NH$_2$ on Graphene in the Presence of Primary Defects

CHAD JUNKERMEIER, NRC Post-Doctoral Associate, U.S. Naval Research Laboratory, STEFAN BADESCU, U.S. Air Force Research Laboratory, THOMAS REINECKE, U.S. Naval Research Laboratory — The primary amine, NH$_2$, is of interest as a linker between graphene and organic molecules in novel biotechnologies using graphene platforms. We are using \textit{ab initio} electronic structure calculations to study NH$_2$ adsorption on graphene. We find that the adsorption energy on pristine graphene is on the order of 0.778 eV, a relatively weak bond. We are interested in situations in which the bonding of NH$_2$ is stronger and are studying systems in which NH$_2$ adsorbs near defects. We find the adsorption energy of a NH$_2$ molecule near a second NH$_2$ molecule is as high as 1.037 eV and that the adsorption near a substitu-tional N atom is 1.063 eV. We find that there is a RKKY-like interaction between the adsorbate molecules in the case of two NH$_2$. We will also give results for NH$_2$ adsorption near other defects.