Electronic reconstruction of doped Mott insulator heterojunctions

M. CHARLEBOIS, Universite de Sherbrooke, S.R. HASSAN, R. KARAN, IMSc Chennai, India, M. DION, D. SENECHAL, A.-M.S. TREMBLAY, Universite de Sherbrooke — Correlated electron heterostructures became a possible alternative when thin-film deposition techniques achieved structures with a sharp interface transition [1]. Soon thereafter, Okamoto & Millis introduced the concept of “electronic reconstruction” [2]. We study here the electronic reconstruction of doped Mott insulator heterostructures based on a Cluster Dynamical Mean Field Theory (CDMFT) calculations of the Hubbard model in the limit where electrostatic energy dominates over the kinetic energy associated with transport across layers. The grand potential of individual layers is first computed within CDMFT and then the electrostatic potential energy is taken into account in the Hartree approximation. The charge reconstruction in an ensemble of stacked planes of different nature can lead to a distribution of electron charge and to transport properties that are unique to doped-Mott insulators.


Vanier fellowship, NSERC, CRC, CIFAR, CFI, MDEIE, MIT-Harvard CUA

Andre-Marie Tremblay
Universite de Sherbrooke

Date submitted: 17 Nov 2011

Electronic form version 1.4