Abstract Submitted for the MAR12 Meeting of The American Physical Society

Raman spectra and lattice dynamics of disordered complex perovskite $BaMg_{1/3}Ta_{2/3}O_3$ SEVERIAN GVASALIYA, DAN HUVONEN, Laboratorium fur Festkorperphysik, ETH Honggerberg, 8093 Zurich, Switzerland, SERGEY LUSHNIKOV, Ioffe Physico-Technical Institute, 194021, St Petersburg, Russia, ELENA POPOVA, St. Petersburg State University, Department of Crystallography, 199034, Russia & Ioffe Physico-Technical Institute, 194021, St Petersburg, Russia, TATIYANA SHAPLYGINA, Ioffe Physico-Technical Institute, 194021, St Petersburg, Russia, ANDREY ZHELUDEV, Laboratorium fur Festkorperphysik, ETH Honggerberg, 8093 Zurich, Switzerland — In relaxor ferroelectrics the chemical and the displacive ionic disorders coexist and may cause a relaxation of the selection rules for Raman scattering. We performed a Raman scattering study of BaMg_{1/3}Ta_{2/3}O₃ (BMT), which is chemically disordered cubic perovskite showing no evidences for displacive disorder. Polarized Raman spectra from a single crystal of BMT were collected in the temperature range of 5 - 550 K. We are going to discuss the symmetry assignments of the observed modes and their temperature evolution. Simplified shell-model for the lattice dynamics of BMT will be presented. The results for BMT will be compared to the well-known observations for the Raman spectra from related relaxor ferroelectrics PbMg_{1/3}Ta_{2/3}O₃ and PbMg_{1/3}Nb_{2/3}O₃. In particular, the lowest Raman line observed in BMT is at $\sim 110 \text{ cm}^{-1}$, whereas the doublet line in $PbMg_{1/3}Ta_{2/3}O_3$ is observed around 50 cm⁻¹. Also, we found out that the width of well-isolated A_{1g} line of BMT is approx-Severian Gvasaliya

imately two times narrower than that observed in relaxors. Laboratorium fur Festkorperphysik, ETH Honggerberg, 8093 Zurich, Switzerland

Date submitted: 07 Dec 2011

Electronic form version 1.4