Abstract Submitted for the MAR12 Meeting of The American Physical Society

Chlorine-doping effects on crystal structure and superconductivity in $\mathbf{FeSe}_{1-x}\mathbf{Cl}_y^{\ 1}$ H.H. SUNG, R.R. HU, S.C. CHEN, W.H. LEE, National Chung Cheng University, W.H. LEE TEAM — According to the assessed Fe-Se phase diagram,² the FeSe compound could crystallize either in tetragonal Pb-O type structure with space group P4/nmm (called β FeSe) or hexagonal Ni-As type structure with space group $P6_3/mmc$ (called δ FeSe) depending on the materials preparation process. In general, different starting composition of $FeSe_x$ results in a mixture of superconducting phase with almost identical T_c and different amounts of magnetic impurity, therefore, it was proposed that the tetragonal β -FeSe superconducting ~ 8 K) only exists in a very narrow Se-deficiency range.³ Our experimental data indicated that the single hexagonal δ phase sample could be obtained by carrying out the low-temperature (400 °C) annealing for $FeSe_xCl_y$ after reaction at 680 °C. This result is contrary to what is observed in the FeSe system in which the tetragonal β phase is the predominant stable one at the low annealing temperature 400 °C. As compared with the β -FeSe superconductor reported in the literature, higher T_c values (> 8 K) and larger superconducting volume fraction could be achieved by suitable tuning and heat treatments in the $FeSe_xCl_y$ system.

W.H. Lee National Chung Cheng University

Date submitted: 27 Nov 2011 Electronic form version 1.4

¹Supported by the National Science Council of Republic of China under Contract Numbers NSC 99-2112-M-194-006-MY3 and NSC 100-2811-M-194-015.

 $^{^{2}}$ "Binary Alloy Phase Diagrams" 2^{nd} edition, ASM International, Editor-in-Chief: Thaddeus B. Massalski, pp 1769-1770 (1992).

³Zhaofei Li, et. al., J. Phys. & Chem. Solids, **71**, 495-498 (2010).